±³¾°Ìõ¼þ£º
ÒÑ֪ij¶Ä²©†–î}ÖУ¬¶Äͽ¼×µÄ³õʼ±¾½ðΪ a £¬Ã¿´ÎÏÂ×¢½ð¶îΪ b £¬ÇÒÓÐ0≤ b ≤ a £»ÔÚ»ñʤ¸ÅÂÊΪ p £¨¼´Ê§°Ü¸ÅÂÊ q =1- p £©µÄÌõ¼þÏ£¬Èç¼×»ñʤÔòӮȡ m*b £¬Ê§°ÜÔòÊäÈ¥ n*b £¬²¢ÓÐ m >0£¬0≤ n ≤ 1¡£
†–î}£º
ÔÚÏÞÖƵ¥´Î×î´óËðʧ Z = n * b ≤ k * a ,£¨ k Ϊ0µ½1Ö®¼äµÄ³£Êý£©Ç°ÌáÏ£¬È·¶¨¶Äͽ¼×µÄ×î¼ÑÏÂ×¢¹æÄ£ b £¬Ê¹¶Äͽ¼×ÔÚ¾Àú T ´Î¶Ä²©ºóµÄ×ʽðÓà¶î×î´ó»¯£¬¼´ T ´Î¶Ä²©ºó×ʽðÓà¶îµÄÊýѧÆÚÍû×î´ó»¯£º
E T £¨ a £© = MAX ¡¼ p * E T-1 ( a + m * b ) + q E T-1 ( a – n * b ) ¡½ £¬T=1¡¢2¡¢3¡¢…
Çó½â£º
µ±T=1ʱ£¬×ª»¯Îª¶ÔÓÚһάµÄÏßÐÔº¯ÊýÇó¼«Öµ£º
E 1 £¨ a £© = MAX ¡¼ p * ( a + m * b ) + q ( a – n * b ) ¡½
= MAX ¡¼ p * a + p * m * b + q * a –q * n * b ¡½
= MAX ¡¼ a + ( p * m – q * n ) * b ¡½
Ô¼ÊøÌõ¼þΪ£ºZ = n * b ≤ k * a £¬ ¼´b ≤ a * k /n £¬k Ϊ0¡¢1¼ä³£Êý
»ùÓÚ a Ϊ´óÓÚ0³£Êý£¬ b ·Ç¸ºÐÔ£¬µ¼³ö£º¡¾½»Ò×֪ʶmacd.org.cnÊÕ¼¯ÕûÀí¡¿
Èç ( p * m – q * n ) > 0 £¬
µ±ÇÒ½öµ± b Ç÷½üÓÚ a ʱ£¬º¯ÊýÇ÷½üÓÚ×î´óÖµ E max = ( 1 + p * m – q * n ) * a £¬µ«ÒòÔ¼Êø´æÔÚ£¬¹ÊÓУº b = a * k / n £¬ E max = [ 1 + k *£¨ p *m / n –q£©] * a ;
Èç ( p * m – q * n ) ≤ 0 £¬
µ±ÇÒ½öµ± b Ç÷½üÓÚ 0 ʱ£¬º¯ÊýÇ÷½üÓÚ×î´óÖµ E max = a £¬ÔòÓУº b = 0 £¬ E max = a ¡£
Ó¦Óãº
ÔڶIJ©ÖУ¬µ±Âú×ã ( p * m – q * n ) > 0£¬¼´ p * m / n > q ʱ£¬·½¿É²ÎÓë¶Ä²©£¬ÇÒ×î¼ÑÏÂ×¢½ð¶îΪ b = a * k / n ¡£
¶ÔÓÚ¾ÀúÒ»¸öÖÜÆÚºó£¬Çó½âʹ×ʽðÓà¶î×î´ó»¯µÄ×îÓÅÏÂ×¢†–î}£º
³õʼ±¾½ðΪ 1 £¬Ã¿´ÎÏÂ×¢±ÈÀýΪ b £¬ÇÒÓÐ0≤ b ≤ 1 £»»ñʤ¸ÅÂÊΪ p £¨¼´Ê§°Ü¸ÅÂÊ q =1- p £©£¬Èç»ñʤÔòӮȡ m*b £¬Ê§°ÜÔòÊäÈ¥ n*b £¬²¢ÓÐ m >0£¬0≤ n ≤ 1¡£
S = (1 + b*m)Tp * (1 – b*n)Tq * S0
S – Ò»‚€ßLÆÚááµÄÙ€×¢
S0 – Ò»‚€ßLÆÚÇ°µÄÙ€×¢
T – ±íʾһ¸öÖÜÆÚ
(1 + b*m)Tp - ÚA•rµÄÓ°í‘
(1 – b*n)Tq – Ý”•rµÄÓ°í‘
ËùÒÔ£¬Ò»‚€ßLÆÚááµÄӰ푾ÍÊÇ£º
R = S / S0
R = (1 + b*m)Tp * (1 – b*n)Tq
R = (1 + b*m)Tp * (1 – b*n)T(1-p)
R = (1 + b*m)Tp * (1 – b*n)T /(1 – b*n)Tp
R = [(1 + b*m) /(1 – b*n)]Tp * (1 – b*n)T
MAX: R = [(1 + b*m) /(1 – b*n)]Tp * (1 – b*n)T
ÈçºÎÇó½âÔÚÒ»¸öÖÜÆÚÖеÄ×î¼Ñ²ßÂÔÄØ£¿
ÇëͬµÀÖÐÈ˽â´ð